Qual é o Nível de Medida?
Na estatística, o nível de medida é uma classificação que relaciona os valores que são atribuídos às variáveis entre si. Por outras palavras, o nível de medida é utilizado para descrever a informação dentro dos valores. O psicólogo Stanley Smith é conhecido por desenvolver quatro níveis de medição: nominal, ordinal, intervalo, e ratio.
Quatro níveis de medição
Os quatro níveis de medição, por ordem, desde o nível de informação mais baixo até ao nível de informação mais alto são os seguintes:
1. As escalas nominais
As escalas nominais contêm a menor quantidade de informação. Nas escalas nominais, os números atribuídos a cada variável ou observação são apenas utilizados para classificar a variável ou observação. Por exemplo, um gestor de fundos pode escolher atribuir o número 1 às acções de pequena capitalizaçãoSmall Cap StockUma acção de pequena capitalização é uma acção de uma empresa cotada em bolsa cuja capitalização de mercado varia entre $300 milhões e aproximadamente $2 mil milhões., o número 2 às obrigações de empresas, o número 3 aos derivadosDerivadosDerivados são contratos financeiros cujo valor está ligado ao valor de um activo subjacente. São instrumentos financeiros complexos que são, e assim por diante.
2. Escalas ordinais
escalas ordinais apresentam mais informação do que as escalas nominais e são, portanto, um nível de medição mais elevado. Nas escalas ordinais, existe uma relação ordenada entre as observações da variável. Por exemplo, uma lista de 500 gestores de fundos de investimentoMutual FundsUm fundo de investimento é um pool de dinheiro recolhido de muitos investidores com o objectivo de investir em acções, obrigações ou outros títulos. Os fundos mútuos são propriedade de um grupo de investidores e geridos por profissionais. Saiba mais sobre os vários tipos de fundos, como funcionam, e os benefícios e contrapartidas de investir neles podem ser classificados através da atribuição do número 1 ao gestor com melhor desempenho, do número 2 ao segundo gestor com melhor desempenho, e assim por diante.
Com este tipo de medida, pode-se concluir que o gestor do fundo de investimento com o número 1 teve um melhor desempenho do que o gestor do fundo de investimento com o número 2.
3. As escalas de intervalo
As escalas de intervalo apresentam mais informação do que as escalas ordinais, na medida em que dão garantias de que as diferenças entre os valores são iguais. Por outras palavras, as escalas de intervalo são escalas ordinais mas com valores de escala equivalentes de intervalo baixo a alto.
Por exemplo, a medição da temperatura é um exemplo de uma escala de intervalo: 60°C é mais fria que 65°C e a diferença de temperatura é a mesma que a diferença entre 50°C e 55°C. Por outras palavras, a diferença de 5°C em ambos os intervalos tem a mesma interpretação e significado.
Por exemplo, o exemplo da escala ordinal não é uma escala de intervalo: Um gestor de fundos classificado em 1 provavelmente não superou o gestor do fundo classificado em 2 pelo mesmo montante que um gestor de fundos classificado em 6 superou um gestor de fundos classificado em 7. As escalas ordinais fornecem uma classificação relativa, mas não há qualquer garantia de que as diferenças entre os valores da escala sejam as mesmas.
Um inconveniente nas escalas de intervalo é que elas não têm um verdadeiro ponto zero. O zero não representa uma ausência de algo numa escala de intervalo. Considerar que a temperatura -0°C não representa a ausência de temperatura. Por esta razão, as escalas de intervalo não fornecem alguns conhecimentos – por exemplo, 50°C não é duas vezes mais quente que 25°C.
4. As escalas de relação
As escalas de relação são as escalas mais informativas. As escalas de relação fornecem classificações, asseguram diferenças iguais entre os valores da escala, e têm um verdadeiro ponto zero. Em essência, uma escala de rácio pode ser pensada como escalas nominais, ordinais e de intervalo combinadas como uma.
Por exemplo, a medida do dinheiro é um exemplo de uma escala de rácio. Um indivíduo com $0 tem uma ausência de dinheiro. Com um verdadeiro ponto zero, seria correcto dizer que alguém com $100 tem o dobro de dinheiro que alguém com $50.
Mais Recursos
CFI é o fornecedor oficial do Financial Modeling and Valuation Analyst (FMVA)™FMVA® CertificationJoin 350.600+ estudantes que trabalham para empresas como a Amazon, J.P. Morgan, e Ferrari programa de certificação, concebido para transformar qualquer pessoa num analista financeiro de classe mundial.
Para continuar a aprender e desenvolver os seus conhecimentos de análise financeira, recomendamos vivamente os recursos adicionais de CFI abaixo:
- Basic Statistics Concepts for FinanceBasic Statistics Concepts for FinanceUma sólida compreensão das estatísticas é de importância crucial para nos ajudar a compreender melhor as finanças. Além disso, os conceitos estatísticos podem ajudar os investidores a monitorizar
- Média geométricaA média geométrica é o crescimento médio de um investimento calculado multiplicando n variáveis e tomando depois a n raiz quadrada. É o retorno médio
- DesvioPadrãoDesvioPadrãoDe um ponto de vista estatístico, o desvio padrão de um conjunto de dados é uma medida da magnitude dos desvios entre os valores das observações contidas
li>Tendência CentralTendência CentralTendência Central é um resumo descritivo de um conjunto de dados através de um único valor que reflecte o centro da distribuição de dados. Juntamente com a variabilidade